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A variational principle is developed for the lowest energy of a system described by a path integral. It is
applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Frohlich.
The motion of the electron, after the phonons of the lattice field are eliminated, is described as a path
integral. The variational method applied to this gives an energy for all values of the coupling constant.
It is at least as accurate as previously known results. The effective mass of the electron is also calculated,

but the accuracy here is difficult to judge.

N electron in an ionic crystal polarizes the lattice
in its neighborhood. This interaction changes the
energy of the electron. Furthermore, when the electron
moves the polarization state must move with it. An
electron moving with its accompanying distortion of
the lattice has sometimes been called a polaron. It has
an effective mass higher than that of the electron. We
wish to compute the energy and effective mass of such
an electron. A summary giving the present state of
this problem has been given by Fréhlich.! He makes
simplifying assumptions, such that the crystal lattice
acts much like a dielectric medium, and that all the
important phonon waves have the same frequency. We
will not discuss the validity of these assumptions here,
but will consider the problem described by Frohlich
as simply a mathematical problem. Aside from its
intrinsic interest, the problem is a much simplified
analog of those which occur in the conventional meson
theory when perturbation theory is inadequate. The
method we shall use to solve the polaron problem is
new, but the pseudoscalar symmetric meson field
problems involve so many further complications that
it cannot be directly applied there without further
development.
We shall show how the variational technique which
is so successful in ordinary quantum mechanics can be
extended to integrals over trajectories.

STATEMENT OF THE PROBLEM

With Fréhlich’s assumptions, the problem is reduced
to that of finding the properties of the following
Hamiltonian:
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X[axt exp(—iK- X)—ax exp(iK-X)]. (1)
Here X is the vector position of the electron, P its
conjugate momentum, ax™, ax the creation and annihi-
lation operators of a phonon (of momentum K). The
frequency of a phonon is taken to be independent of K.
Our units are such that #%, this frequency, and the

1 H. Frohlich, Advances in Physics 3, 325 (1954). References to
other work is given here.

electron mass are unity. The quantity a acts as a
coupling constant, which may be large or small. In
conventional units it is given by
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where ¢, e, are the static and high frequency dielectric
constant, respectively. In a typical case, such as NaCl,
a may be about 5. The wave function of the system
satisfies (A=1)

i0y/ot=Hy, (2

so that if ¢, and E, are the eigenfunctions and eigen-
values of H,
Hon=E,on, 3)

then any solution of (2) is of the form
V=31 Croone—iEnt,

Now we can cast (1) and (2) into the Lagrangian form
of quantum mechanics and then eliminate the field
oscillators (specializing to the case that all phonons are
virtual). Doing this in exact analogy to quantum
electrodynamics,? we find that we must study the sum
over all trajectories X(#) of exp(sS’), where
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This sum will depend on the initial and final conditions
and on the time interval 7. Since it is a solution of the
Schrédinger Eq. (2), considered as a function of T it
will contain frequencies E.,, the lowest of which we seek.
It is difficult to isolate the lowest frequency, however.
For that reason, consider the mathematical problem
of solving
&)

without question as to the meaning of ¢ This has the
same eigenvalues and eigenfunctions as (3), but a

oY/ ot=—Hy,

2 R. P. Feynman, Phys. Rev. 80, 440 (1950).
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